9a-Propargyl-1,2,3,9-tetrahydrofluorene-3.9-dione

KANDASAMY CHINNAKALI,^a[†] HOONG-KUN FUN,^b DESIKAN RAJAGOPAL, ^c SAMBASIVAM SWAMINATHAN ^c and KAMARAJ SRIRAGHAVAN^c

^aDepartment of Physics, Anna University, Chennai 600 025, India, ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India. E-mail: hkfun@usm.my

(Received 4 January 1999; accepted 28 January 1999)

Abstract

In the title compound, $C_{16}H_{12}O_2$, the six-membered ring adopts a half-chair conformation and the fused fivemembered ring is in a conformation between flattened sofa and half-chair. The propargyl residue is twisted diagonally towards the five-membered ring. In the solid state, the propargyl group is involved in C-H···O intermolecular hydrogen bonds to form an infinite onedimensional chain along the *a* axis.

Comment

The title compound, (I), is a versatile building block for the total synthesis of tetracyclic diterpenes, namely gibbane (Takano et al., 1981; Railton, 1982), which are potential plant-growth hormones especially involved in the growth of seedings. It may also be used to construct a complex molecular framework via radical cyclization (Rajagopal & Swaminathan, 1999). The present structural study was undertaken in order to elucidate the molecular conformation.

Bond distances and angles in the structure agree with reported values (Allen et al., 1987; Lakshmi et al., 1996). The six-membered ring (C1-C5, C13) adopts a half-chair conformation with the asymmetry parameter $\Delta C_2(C2-C1) = 8.6(3)^\circ$; atoms C4 and C5 deviate from the mean plane by -0.318(2) and $0.284(2)^{\circ}$, 1135

conformation between flattened sofa and half-chair and it forms dihedral angles of 18.3(1) and $5.9(1)^{\circ}$ with the adjacent rings. The plane of C5 and atoms C14, C15 and C16 of the propargyl residue is almost orthogonal [dihedral angle $89.5(2)^{\circ}$] to the five-membered ring. In the crystal, the screw-related molecules are linked by C16—H16 · O1(2 - x, $\frac{1}{2} + y$, $\frac{3}{2} - z$) hydrogen bonds to form an infinite one-dimensional chain along the a axis. The molecules translated along the *a* axis are interlinked by weak C14—H14B···O2(x + 1, y, z) hydrogen bonds to form a supramolecular structure which is further stabilized by very weak C11--H11...O1(2-x, 1-y)(1-z) interactions between the inversion-related molecules.

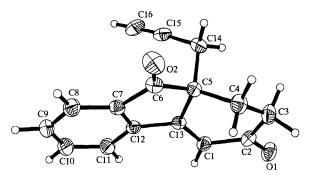


Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Experimental

The title compound was prepared by the treatment of 2-propargyl-2-(3-oxobutyl)indan-1,3-dione (2.54 g, 0.01 mol) in dry ether (25 ml) with pyrrolidine (0.71 g, 0.01 mol) in acetic acid (0.6 g, 0.01 mol) under a nitrogen atmosphere at 273-278 K for 1 h. Ether was evaporated under reduced pressure and the resultant crude product was treated with a catalytic amount of p-toluenesulphonic acid in dry benzene (30 ml) under reflux conditions for 30 min. Benzene was evaporated under reduced pressure and the crude product was purified directly on a flash silica-gel column (200-400 mesh) using chloroform as an eluant and was crystallized from dry methanol at room temperature (m.p. = 429-430 K with 72-75% chemical yield).

Crystal data

 $C_{16}H_{12}O_2$ $M_r = 236.26$ Monoclinic $P2_1/c$ a = 6.4210(2) Å b = 16.6897(3) Å c = 11.7575(3) Å $\beta = 98.738 (1)^{\circ}$ $V = 1245.36(5) \text{ Å}^3$ Z = 4 $D_x = 1.260 \text{ Mg m}^{-3}$ D_m not measured

Mo $K\alpha$ radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4571 reflections $\theta = 2.14 - 28.27^{\circ}$ $\mu = 0.082 \text{ mm}^{-1}$ T = 293 (2) KPlate $0.42 \times 0.18 \times 0.10$ mm Colourless

[†] Visiting Postdoctoral Fellow, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.

$C_{16}H_{12}O_2$

Data collection

Siemens SMART CCD area-	2243 reflections with
detector diffractometer	$I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.035$
Absorption correction: none	$\theta_{\rm max} = 28.27^{\circ}$
8184 measured reflections	$h = -8 \rightarrow 8$
3048 independent reflections	$k = 0 \rightarrow 22$
	$l = 0 \rightarrow 15$

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta\rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$
$R[F^2 > 2\sigma(F^2)] = 0.056$	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.135$	$\Delta \rho_{\rm min} = -0.16 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.119	Extinction correction:
3048 reflections	SHELXTL (Sheldrick,
212 parameters	1997)
All H-atom parameters	Extinction coefficient:
refined	0.014 (3)
$w = 1/[\sigma^2(F_o^2) + (0.0468P)^2]$	Scattering factors from
+ 0.3154P]	International Tables for
where $P = (F_o^2 + 2F_c^2)/3$	Crystallography (Vol. C)
refined $w = 1/[\sigma^2(F_o^2) + (0.0468P)^2$	Scattering factors from International Tables for

Table 1. Selected geometric parameters (Å, °)

01—C2	1.224 (2)	C5—C6	1.536 (2)
O2—C6	1.212 (2)	C5-C14	1.558 (2)
C1-C13	1.337 (2)	C6C7	1.482 (2)
C1-C2	1.465 (3)	C7—C12	1.396 (2)
C2-C3	1.515 (3)	C12—C13	1.463 (2)
C3C4	1.538 (3)	C14—C15	1.463 (3)
C4C5	1.530 (2)	C15—C16	1.178 (3)
C5-C13	1.516 (2)		
C13-C1-C2-C3	11.6 (3)	C4-C5-C13-C1	-35.5 (2)
C1-C2-C3-C4	10.7 (3)	C13-C5-C14-C15	50.3 (2)
C2-C3-C4-C5	-43.4 (3)	C4-C5-C14-C15	172.57 (16)
C3C4C5C13	53.7 (2)	C6-C5-C14-C15	-60.9 (2)
C2-C1-C13-C5	1.6 (3)		

Table 2. Hydrogen-bonding geometry (Å, °)

$D - H \cdot \cdot \cdot A$	D—H	H···A	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
C16—H16···O1 ⁱ	0.94 (3)	2.37 (3)	3.252 (3)	156 (2)
C14H14 <i>B</i> ···O2 ⁱⁱ	0.99 (2)	2.48 (2)	3.423 (2)	160 (2)
C11—H11···01 ⁱⁱⁱ	1.01 (2)	2.57 (2)	3.554 (2)	162 (2)

Symmetry codes: (i) 2 - x, $\frac{1}{2} + y$, $\frac{3}{2} - z$; (ii) 1 + x, y, z; (iii) 2 - x, 1 - y, 1 - z.

All H atoms were located from a difference map and were refined isotropically.

Data collection: SMART (Siemens, 1996). Cell refinement: SAINT (Siemens, 1996). Data reduction: SAINT. Program(s) used to solve structure: SHELXTL (Sheldrick, 1997). Program(s) used to refine structure: SHELXTL. Molecular graphics: SHELXTL. Software used to prepare material for publication: SHELXTL and PLATON (Spek, 1990).

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for research grant R&D No. 190-9609-2801. KC thanks the Universiti Sains Malaysia for a Visiting Postdoctoral Fellowship.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Lakshmi, S., Subramanian, K., Koellner, G., Steiner, Th. & Rajagopalan, K. (1996). Acta Cryst. C52, 405-407.
- Railton, I. D. (1982). Cell Biol. Int. Rep. 6, 319-337.
- Rajagopal, D. & Swaminathan, S. (1999). Unpublished work.
- Sheldrick, G. M. (1997). SHELXTL. Structure Determination Software Programs. Version 5.10. Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Takano, S., Kasahara, C. & Ogasawara, K. (1981). J. Chem. Soc. Chem. Commun. pp. 635-637.

Acta Cryst. (1999). C55, 1136-1138

4-(4-Methylphenyl)-3-phenyl-4*H*-1,2,4triazole

Kandasamy Chinnakali,⁴† Hoong-Kun Fun,^b Annamalai Senthilvelan,^c Kamaraj Sriraghavan^c and Vayalakkavoor T. Ramakrishnan^c

^aDepartment of Physics, Anna University, Chennai 600 025, India, ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India. E-mail: hkfun@usm.my

(Received 3 February 1999; accepted 11 February 1999)

Abstract

In the title compound, $C_{15}H_{13}N_3$, the triazole ring is planar and forms dihedral angles of 35.05(5) and 65.44(5)°, respectively, with the attached phenyl and methylphenyl rings. The crystal structure is stabilized by a number of C—H··· π interactions and weak C— H···N short contacts.

Comment

Generally, 1,2,4-triazole derivatives are found to be associated with diverse pharmacological activity. Recently, some new triazole derivatives have been synthesized as possible anticonvulsants, antidepressants, tranquilizers and plant-growth regulators (Bradbury & Rivett,

Supplementary data for this paper are available from the IUCr electronic archives (Reference: HA1252). Services for accessing these data are described at the back of the journal.

[†] Visiting Postdoctoral Fellow, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.